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I. INTRODUCTION

Suppose L is a class of information sources. For a given distortion

measure, consider the function

sup Ra (D); D 0 (1)

where Ra (D) is the rate-distortion function (corresponding to the given
-' a

distortion measure) for the individual source a. The quantity in (1) is

*! of interest in the study of coding schemes for classes of sources. For

example, under compactness conditions on the class 67 the quantity in (i)

represents a rate-distortion function for 6' (as defined by Sakrison [1]), and,

even for noncompact classes, the quantity of (I) is a lower bound on this

rate-distortion function. Further, if there is a universal code for 67,

then the quantity in (i) describes the worst-case rate (versus distortion)

required to transmit, via the universal code, an arbitrarily chosen member

of 4'.

In this paper we consider the function in (1) for classes of homogeneous

discrete-parameter sources that are specified only in terms of the spectral

properties of their elements. We consider the particular version of (1)

corresponding to the single-letter mean-square-error (MSE) distortion

measure. Note that for the one-parameter case, which corresponds to 47

being a class of covariance-stationary discrete-time sources specified only

in spectral terms, the MSE version of the function in (1) is unchanged if

L' is replaced by its subset consisting only of Gaussian sources (Berger

[2, p. 154]). Thus, in this context, it is reasonable to restrict attention

to the consideration of classes of Gaussian sources. Such a class ( can

be specified completely by defining a class T of spectral measures, and the

determination of the quantity of (1) for two specific source classes of

.'-' --- ',- , -." > " ''''" , - ,.. . ,".'- . "- -- - - - - - --,- --- --.-"- - - - --•......--,.- ..,.-.........:, _-,-.,_ -, _--- -- .. .... : _
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this type has been considered previously by Sakrison [3]. Here, for a

general type of such classes, we demonstrate the existence of a member

spectrum whose rate-distortion function achieves (1) for each value of

D _ 0. In particular, we consider classes M whose upper measures are

Choquet alternating capacities of order 2 (Choquet (4]). Such classes

occupy a central position in generalizations of the theories of hypothesis

testing (Huber and Strassen (5]) and .of stationary linear smoothing (Poor

[6]), and include many important classes such as contaminated mixtures,

variation neighborhoods, and Prohorov neighborhoods. We show here that

the spectrum achieving the supremum in (1) for such a class is given by

the derivative (in the sense of Huber and Strassen [5]) with respect to

Lebesgue measure of the upper measure of 17? and corresponds to the element

of 74 that is closest to Lebesgue measure in a sense defined by directed

divergence. Since Lebesgue measure represents a white spectrum (corres-

ponding to a memoryless source), the maximizing spectrum is thus the member

of M that is "'most memoryless", a result that certainly agrees with the

* intuitive meaning of the MSE rate-distortion function.

Section II contains a more complete specification of the spectral

classes to be considered and gives properties of these classes that are

relevant to the determination of the quantity sup R a(D). A number of
aEa

examples are also presented that demonstrate the generality of this type

of class. Section III contains the main analytical results concerning the

quantity in (1) for such classes. In particular the existence of a maxi-

mizing spectrum is demonstrated, and the characterization of this spectrum

as the element of V closest to Lebesgue measure is established. Section

IV considers in detail the specific case in which the class V? consists of

all spectra that are a convex mixture of a discrete-time wide-sense Markov

spectrum and an unknown "contaminating" spectrum, and the results of



--

Section III are illustrated directly for this case. The extension of the

results to continuous-parameter cases is discussed in Section V.

.
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II. CHOQUET CAPACITIES, HUBER-STRASSEN DERIVATIVES, AND SPECTRAL UNCERTAINTY

' Throughout this paper n is a fixed positive integer and X - rl ;tEZn}

is ann-parameter homogeneous Gaussian source (Z denotes the set of all

integers). By way of Bochner's theorem (Wong [7, p. 245]) a class of

sources of this type can be specified by defining a class M of spectral

measures on (Q,2) where n denotes the n-dimensional rectangle [_TT]n and

o denotes the Borel a-algebra on Q. In this paper we will restrict our

attention primarily to classes 7 satisfying the power constraint m(n)= (2iT) nP

for all m E M where P is a fixed positive number. It is straightforward to

relax this constraint; this restriction, however, allows us to consider the

effects of spectral shape on the rate-distortion function in more detail.

* .. The upper measure v of a class V) with power constraint is the set

function on 3 defined by

v(B) - sup m(B); B E 1. (2)
mETZ

Note that v has the following properties: (i) v(0) - 0 and v(n) (2r)nP,

(ii) A c B implies v(A) f v(B), and (iii) B T B implies v(B ) t v(B), where
n n

all sets are assumed to be in , and 0 denotes the null set. If 7' is weakly

compact, then v has the additional property (Huber and Strassen [5, p. 252]):

(iv) F n 4 F with Fn closed for all n implies V(Fn) v(P). A set function

having properties (i) through (iv) is a capacity on 8 in the sense of

Choquet [4]. In this paper we consider classes whose upper measures satisfy

(i)-(iv) and the additional property: (v) v(A U B) + v(A n B) i" v(A) + v(B)

*! for all A, B E S. A capacity satisfying this latter property is said to be

alternating of order 2 and is termed a 2-alternating capacity. Note that a

finite measure is an example of a 2-alternating capacity.

F-
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If the upper measure v of a class 5 is a 2-alternating capacity then

r. coincides with the class 7? defined by

. v  m E MI m(B) ! v(B); B E S, and m(0) v (0) (3)

where M denotes the class of all finite measures on (0,R) (Huber and

Strassen (5, Lemma 2.5]). Classes of the form of (3) include many of the

traditional models for spectral uncertainty, and a number of useful examples

are discussed below. It is interesting to note that all such classes are

weakly compact [5, Lemma 2.2] and that, if v is a measure, then 7- (v).

Thus any results obtained for also apply to a single measure; in fact

the classes M have been useful in generalizing hypothesis testing and

Wiener filtering results which hold for single measures (such as the

Neyman-Pearson Lemma) to classes of measures [5,6].

The properties of classes of the form of (3) have been studied by

Huber and Strassen [5]. The properties of such classes relevant to the

present problem can be summarized in the following two lemmas (here, and

elsewhere in this paper, X denotes Lebesgue measure on

Lemma 1: Suppose v is a 2-alternating capacity on (0,R). There exists a

Lebesgue-measurable function Yrv :  " [0,=] such that we ((Tv>) inf w9 (B)

for each 8 a 0 where we is the set function on B defined by

we(B) = v(S €) +8%(B), BES. (4)

Furthermore, ir is unique a.e. [X.v
,.'',For compactness of notation we will write (f > e3 todenote[weC[ f(w)>'B).

i . ... . .

-----* . . . . . . .
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Proof: Since X is a finite measure and hence a 2-alternating capacity on

(Cu2), the existence of TT follows from Lemmas 3.1 and 3.2 of [5]. The

uniqueness of rr follows from Theorem 5.1 of [5].

- Lemma 2: Suppose v andTT v are as in Lemma I and [Tv >  ' v O.

Then there exists a measure q E % such that 1r = dq/dX and q(%C) - v(%)v

for all 9 - 0. Here dq/dX denotes the generalized Radon-Nikodym derivative

of q with respect to X; that is, dq/d% may be infinite on a set of X

measure zero.

Proof: The existence of such a q follows from Theorem 4.1 of [5] and from

the construction in the proof of this theorem (see also Huber and Strassen

[81).

Note that, if v is a finite measure, then the function 1r is the

3l (generalized) Radon-Nikodym derivative of v with respect to X. Partly for

this reason Huber and Strassen termed the function rr the Radon-Nikodym

vv'"+ derivative of v with respect to X. However, to distinguish IT from an
""° V

ordinary Radon-Nikodym derivative, we will term r v the Huber-Strassen

derivative of v with respect to X. Lemmas 1 and 2 are particular cases of

more general results for differentiating one capacity with respect to

another [5]. In this more general context, the Huber-Strassen derivative

, is the basis for minimax hypothesis testing between two classes cf

probability measures of the form 7 [5] and for minimax linear smoothing

of a signal with spectral measure in a class of the form M observed in

additive noise with spectral measure in a class of the form 7 v [6].

Lemmas 1 and 2 give the basic properties needed to consider the rate-

distortion function over classes of Gaussian sources determined by spectral

classes of the form of (3). We conclude this section by giving several

useful examples of such classes that illustrate the generality of this
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model. In Examples 1 and 2, m0 is a fixed finite spectral measure on C2,3)

and e is a fixed number in [0,i]. In all cases v.(0) is defined to be

zero.

Example i (c-mixtures): The set function vl(B) (1-e)m0 (B) + em0(Q)

BE13, B # 0 is a 2-alternating capacity 2 and I is given by

.fl=fmE MI m = (1- e)m0 +ch for some hE M with h) -m 0 ()}. (5)

Thus m0 can be thought of as a nominal spectral model and e as a degree

of uncertainty placed on the model. The model of (5) is one of the earliest

models used for uncertainty in robust hypothesis testing and signal-

detection studies (Huber (9], Martin and Schwartz (10]) and was noted in

[5] to be of the form of (3). The Huber-Strassen derivative of v1 with

3respect to Lebesgue measure on Q is found by noting that the set function

we of (4) is given for this case by

{(l._)m 0 (Bc)+em P)+e(B);B

we (B) - (6)

.Xe ) = e( 2 r)n ; B =Q

which is minimized over 1 by the set

2Note that this set function (and the one defined in Example 2) is dis-
continuous fromabove at the null set 0. However, for Q - [-T,n]n , this
discontinuity does not violate the property that v must be continuous
from above on closed sets (i.e., Property (iv)) since, in a compact
separable metric space, there is no sequence of closed sets converging
down to the null set (Dunford and Schwartz (11, pp. 30-31]).

. . ..
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3 3 {~ > GI l ) ; if we (tT > )nle b e

otherwise

* where =o dm0/dX. Noting that we can define i-v (w) = inf[ COw9qB0]

we have that

T" (w) - maxfc', (l-e)r0 (w)), wEO2 , (8)

where c' = sup[qZ Olwe((1T0 > e/(i-e)3) - e(2n)n]. A specific example

Pof this class will be considered in Section IV below.

Example 2 (variation neighborhoods): The set function V2 (B)I, minto(B) + m O (D), mo(O)J B E 2, B # 0, is a 2-alternating capacity with

7 v2 given by

- mE M1 (m,mO) <- emo(C), and m(0) = mo(n)] (9)

where p is the variational distance (or Kolmogorov metric) defined on M

by p(L,v) - suplI(B) -v(B)I. Classes of the form of (9) have been
BES

considered previously in the contexts of robust hypothesis testing (Huber

[9]) and robust Wiener filtering (Poor [12]). Note

that this class is also a model for a degree e of uncertainty in a

nominal spectral model io, although the deviation allowed in (9) is somewhat

= different from that allowed in (5). Note further that (9) with degree of

" uncertainty e/2 contains (5) with degree of uncertainty e. The de-

rivative of v2 with respect to Lebesgue measure on Q can be found from

general results in [13] and [14] and is given by

4 .* ... . . .. . . . i . i ,
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rr:(w) M max[c ,min[ c T-1(w) E (10)

where r dm /d, c" inf (e O1mo((To > e) - c(C<)<X(TT0 > e)), and

Sc' =sup(e a oex( T eb1 ! mo((Tr e ) + C n)

Example 3 (band models): Suppose P > 0 is the power in X and that mL

and mU are two finite spectral measures on P,1) with mLfz) < (2?r)aP<mU(n).

Define two 2-alternating capacities vL and v by vL(B) = mL(B) +
VL U LJB (B

((2G)naP-mL(f2)), BE S, B0, andvu(B)--minmU(B), (2)nP, BES, BA . Then

the set function v3 (B) = mintvL(B), v (B)3 is a 2-alternating capacity
U

on 3,/) and Mv is given by

-( - m E MIm 5 m--5 m and mlj) = ( 2 r)nP} (l)MV L U

3
- Thus, v 3 for this case is the band of spectral measures lying between the spectral

measures mL and mU . This class is known as the band model and has been utilized

previously in problems of robust signal detection (Kuznetsov [15], Kassam [16]) and

5robust Wiener filtering (Kassam and Lim [17]). This class was shown

to be of the type (3) by Vastola and Poor [18]. Note that, with m =

(I -e)m 0 and with mU -, the class of (11) gives the e-mixture class of

(5). The derivative of v3 with respect to Lebesgue measure on C2 can be deter-

mined from a result in [18 ] and involves both derivatives dmu/d% and dmL/dX.

Other examples of classes of the form of (3) include Prohorov

Now neighborhoods of a nominal spectral measure m0 (see Strassen (19, p. 438])

and generalizations of the mixture model of Example 1 generated by mixed

capacities of the form v(B) - Iv (B)(dg), where t is a measure onJ'

L (see Strassen [19, Theorem 4]). A class of spectral measures that does

not fit the model of (3) is Sakrison's 1odel (b) (see [3, p. 1i]) which

II



°,--7

10

-. essentially consists of those measures placing exact amounts of spectral

p measure on members of a set of intervals covering the interval [-1,T].

This type of model is not of the type in (3) because such classes of measures

are not weakly closed (Vastola and Poor [18]).

a

f-.

•.
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III. THE RATE-DISTORTION FUNCTION ON SPECTRAL CLASSES GENERATED BY
CAPACITIES

The MSE rate-distortion function for a homogeneous Gaussian source

X with spectral measure m depends only on the part of m that is absolutely

continuous with respect to Lebesgue measure. This function, denoted by

*. -.-. "R (D), is given by the parametric relationship

m

£n max(O, log (17 (w) /e)), (dw)
(De(m)) (4n) -n (12)

and

D (m) = (2rr)n m rin~e, TTm(w)IX(dw) (13)

where Tr = dm/dk is the generalized Radon-Nikodym derivative of m with

respect to X,and e is a parameter ranging over the interval (0,Am] with

Am - ess sup 1m (w). Note that 0 -. A < -, since 0 is compact. The expression
mE m

of (12) and (13) is given by Berger (2, Theorem 4.5.3] for the case n - 1

and follows from Hayes, Habibi, and Wintz [201 for n 2.

It follows from (12) and (13) that the support of R m(D) is the_ imm

interval (0, D) and that R (D ) -0, where D = (217)nF rrdX. With
m m m in

respect to this latter quantity we have the following result:

Lenmma 3: Suppose v is a 2-alternating capacity on 0 ,S) with Huber-

Strassen derivative IT with respect to X. Then r1 dX Z: TT dX for all
v v m

I. ML
.. .. . .. . .. . ... . .. .. . .. . .. .
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Proof: Suppose m E ?v. For each 0 a 0, define sets Be = (Tr > e) and

,TT A M [ >e]. By Lema 1 we have

m( ) B C + 8X(B)J m(%c) +9X(B)

BE-- "(14)

. £ v(Bc) + 8% (B)

for each 9 k 0, where the second inequality follows from the fact that

m £ v. Lemma 2 states that there is a measure q such that 17 is a version
c c"

of dq/dX and v(%)), q( ). Thus, (14) implies

Tr ,dX IcT d

for each 9 < , which in turn implies

r Tmd?, :CIrv' fvd Td% (1.5)

for each 8 < =. Taking the limit as 9 -. 0 in (15) and defining B, n

and A A , we have
a >0

TT fdX 5 Tc T dX + J' TdX + TT' d (16)A Be A%.

Since A and B both have X measure zero, (16) is equivalent to i dX <

S.: 'ndX which was to be shown.

We see from Lemma 3 that no mE v has more nonsingular power than

the member q singled out by Lemma 2. What we will show in the following

paragraphs is that Rq(D) achieves sup R (D), and hence that the spectral

density defined by Tv also achieves this supremum. To do this, we first. ...



13

need the following result which seems intuitively obvious from the

derivation of (12) and (13) and from analogous results for memoryless

* ~.sources (see Berger [2, Theorem 4.2.1 and pp. 110-111]) but for which

we could find no previously published proof.

Lemma 4: Suppose m is a spectral measure on (1,S) with MSE rate-distortion

function R (D). Then R (D) has a right-hand derivative R'(D) for all

DE (O,D) where D. - (2) Tr'n mdX and this derivative is given by

R'(D) = -2_Il where 9 is determined uniquely by the equation
m D D

-nD = (21T) min(e ,r. (w)) X(dw). (17)
D'm

Proof: The existence of the right-hand derivative of Rm (D) follows from
' the fact that R M(D) is convex on ( 0 ,Dm) (see Berger [2, p. 270] and

Royden [21, p. 109]). The relationship D,(m) = (21?)'n[m(ETT m Sl) +

8X (T m > 93)] defines a continuous, strictly increasing mapping from

(0, am) onto (0, D). This follows by noting that, for 0 < e < 0' < A

we have

(0 9- IT >8)(9(1r >9] a Ti -
m m

_ * (2rr)n[n,(m) -D (m)] =( ' -e)X >e'])+ 'm'e)dX

S ' -e),([Tr > ']) > 0, M (18)

where the final inequality follows from the fact that 9' < & M

ess sup ITm(W). Thus, a unique 0D is determined by (17) for each DE (O,D),

and the right-hand derivative of R M(D) is given by the expression

R'(D) - lim [(Rm(D,(m)) -R (D))/(D.(m) - D)]. (19)
M m D

..- D



14

Equation (12) implies that the numerator in (19) can be written as

R (D (m)) - R(D) = (4Tr) -n [>og(ele)X))> + I loge.l )dXjme inog( D in)k((T (e <rvse58
Din

= (4l)"= [log (eD/e)k((1m>e]) -eD1 1 (TT-e)dx +O[ (e-eD)2 ]].

D m
DV..

(20)

Similarly the equality in the middle of (18) gives

Da(m) -D - (2T)'n[(e -eD )x(ET m>e])+ J(Tr-eD)dk]. (21)

Ufe D<Tfl e]

We thus have

(R(De (m)) - R(D))/(D (m) - D) + 2"eD1I -

(4Tr)'nj (log (eD/e) +0eD )X ((IT > 8] ) + 0( (e - 8D)2) (Do (M) - D)

< 2 "n (log(eM/e)+e)/(e -9D) + o(e -eD)/ (tTT>e])I. (22)

Since eim (log(e D/e) + e 1)/(e -eD)I - 0 and X(meD ) >0, the

limit as 8 approaches 8D of the right-hand side of (22) is zero.

Thus R,(D) - -2"% D1 which was to be shown.

We may now use Lemma 4 to prove the main analytical result of this

paper. In particular, we have the following:

Theorem 1: Suppose v is a 2-alternating capacity on PR). Define P -

* (2 T)-nv4p) and Pv - (2n) n TvdX, where v dv/dX. Then sup R (D) is
m V
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defined parametrically on (0,P ) by the equations

n

sup R(De) = (4 7 )n maxCO,log(Tv(w)/9))X(dw) (23)
mm

{ V ,

and

De - (2 T)n min(O,TTv(w)]X(dw), (24)

and sup Rm(D) 0 for D E [Pv,P]. Moreover, there exists a measurem v
q E Z'v such that supR (D) - R (D) and dq/dX = T a.e. (X].nv v  q - V:

Proof: Suppose m E V then R (D) is absolutely continuous on any interval

[D,P] with D > 0 since it is convex on (0,P] (Royden [21, p. 109]). Thus,

for any D E (OP),

P P
R (D) = R(P) - f Rm(x)dx - -f R'(x)dx, (25)

mD D

where R'(X) is obtained fromLemma 4 forxE (0,Pm) andR' (x) -0 for x2P "
mm m PM El

Equation (25) is equivalent to

2 n Sin e l(m)dx; DE (0,P) -

I x inD,.

Rm (D) - (26)i0 ; DE[P, P]

where e (m) is the unique value of e solving x - (2rr) -n[m(T :5-0) + 
x m

eX(tTTr )]. Note that the existence and uniqueness of 8 x (m) follows

from the development in the proof to Lemma 4. Suppose qEM? is such

that dq/d% - a.e. [X] and q(1T v<- ) - v(([rT sv-]) for all e 0 (the
c of s

existence of such a q follows from Len~1a 2). Then-



.7-

16

m(TT - :e58) +exX({>l) M inf[m(Bc )+GX(B)]- inf[v(Bc)+9X(B)]

BEB BES

':v( v qeq)+ex,<T1,>e])=q(qe)+e(Tq

(27)
U

Thus, since [m(dTT -e)+eX(rrM>e )] is strictly increasing in e on

(0,4m), we must have e x(q)<_ex(m) for all xE (0,P o). Therefore, we

have 9 -1 (q)>Z (m) for all xE (0,Pm) and, sinceLemma3 implies P a Pxx Mq

(26) gives R (D)-- R (D) for all DE (0,P). To complete the proof we need
m q

only note that the quantity defined by (23) and (24) is R q(D) on (0,P q)

and that P - Pq v

Theorem 1 implies that the quantity sup Rm(D) is the rate-distortion
"mo1 v

curve corresponding to the spectral density 17 ,which is the Huber-Strassen

derivative of v with respect to Lebesgue measure on (,B). This theorem

also states that there is a qE ?vthathasdistortionrate sup Rm (D) for

each DE (0,P]. Thus, for classes of the form 74 , the spectral density

rT represents a worst-case or least-favorable spectrum in terms of MSE

distortion rate, and the problem of finding sup R (D) is solved once 17
m v

is determined. For the examples given in Section II, the solution is

.-, thus obtained. In general, we have the following theorem which characterizes

* the spectral measures qEM v (with dq/dX - TT a.e. [X]) that are singledv v

out by Lemma 2.

Theorem 2: For each measure mEM v, define m' to be the part of m that

is absolutely continuous with respect to X (via the Lebesgue decomposition).

A measure qE v satisfies the conclusion of Lemma 2 if and only if, q

minimizes the quantity

[ . . .



17

J(m) = log[d (X +m')/dX d X +m') (27)

over fl?.

Proof: Suppose q satisfies the conclusion of Lemma 2, i.e.,

dq/dk - v ae. [ and q(f v, TT 9) v(fr TT 9) for all 8 0.

Noting that m is convex,define, for each yE [0,1] and mE74r, the measure

- (l-y)q+Ym and the function TT d(' +X)/dX. Since xlog(x) is
Y N

convex for xE (0,m) and since k' - [(l-Y)q' +ym'] we have that J(m) is

convex on ??V" Thus a sufficient condition for q to minimize J(m) over

f v is that bJ(m Y)/bylyn 0 be nonnegative for every mEM v satisfying

J(m)<. Since log[1 (w)]TTY (w) is convex in y on [0,1] for each

wEQ, we have

(TT1-"ro) (+ lg(Tro)) y v'(rr og(T) - Tolog(%o))

--< -rllog() 1 Tog(T 0), a.e. [X]. (28)

The left-most quantity of (28) is bounded below a.e. [X] and the right-most
':l

quantity is integrable with respect to X. Thus since the term y (nlog( )- "

T 0 log(TrO)) converges monotonically to (r, - rO) (1 + log(TOr)) as y 4 0,

the Monotone Convergence Theorem (Royden [2l,p. 84]) implies that

Y-0

( I T r -1 . d
1 0 0



- (l+log(l+vrr ))dm' - j (l+log(1+rr ))dq'. (29)

Since m' ([v - :e] ) <- m(ITT eJ )- v(Errv- e) = q( <Te3) = q' ((TTv_ Te)

for all e > 0,we see that iT is stochastically smaller under q' thanv

under m'. Thus, since (l+log(l+rr )) is increasing in TT, the quantity

in (29) is nonnegative, which is sufficient for q to minimize J(m).

We now see that if q is as in Lemma 2 it minimizes J(m) over ,

Suppose pEy also minimizes J(m) over M . Then, since J(m) is.V •

convex on Z v, J((l-y)q+yp) must be constant for YE [0,1]. This implies,

for instance, that b2 J((l-y)q+yp )/by 21 0. Applying analysis

similar to that yielding (29), we have

2 J((l'Y)q +YP)/Y 2 1 Y. 0 = (T - Trv2 / 0]dX = 0, (30)

where 1 = dp/dX. Equation (30) implies that TT = T a.e. (X] and,hence,'; pq v

that p' =q' mod[X]. Thus p also satisfies the conclusion of Lemma 2.

This completes the proof.

Note that the quantity J(m) of (27) is a measure of the distance or

divergence of the measure (X +m') from X (see, for example, Kullback [22]).

Thus, we see that the least-favorable spectral measure q is that which is

closest to Lebesgue measure in this sense. Since Lebesgue measure on 0

represents white noise (which corresponds to a memoryless source) we see

that q is, in a sense, the "most memoryless" element of 74v. Note also that

Lemma 3 implies that q has the maximum possible nonsingular power of any

measure in M v . These phenomena agree well with the intuitive meaning of

the rate-distortion function since, in general, a memoryless source requires

the highest rate for a given degree of distortion when no other constraints

are placed on the source spectrum.
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V -" IV. EXAMPLE -MIXTURE CONTAMINATED GAUSS-MARKOV SOURCES

In this section we use a specific example of the mixture model of

Example 1 in Section II to illustrate our results. In

particular we consider a one-parameter source (n = 1) whose spectral measure

m has a nominal first-order Markov spectral density with degree of mixture

uncertainty c. That is, we have m , (l-c)m 0 + eh where h is unknown,

e E [0,1], and where m0 is given by

m (A) - P(l-r 2)  A(l-2rcos(w)+r ) X(dw) , A E , (31)

with Irl S I. Recall that P > 0 is the source power. This nominal source

corresponds to a Gaussian source with autocorrelation function

E(XiXi.k) = P.rIk l ; k E Z. We will assume in the followingthat P=1 and

r > 0.

The rate-distortion function corresponding to the nominal source MO

is discussed in [2, pp. 113-115]. This function is given by

1 2R(D) - lo [(1-n )/D] (32)

W for 0 < D A (1-r)/(l+r), and parametrically by

.% (m0 ) - 1 + - t tan (-tan ) (33)

and

(D ( -0 1;12 g( ) ( C2  (2x + 2y)

CA C 2 (2xe) - CA 2 (2y) -2y, log (r)] (34)

0%
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for (1-r)/(l+r) g D < 1, which corresponds to (l-r)I(l+r) T 8 S (l+r)l(l-r).

Here

2_8 21
-i [r1 +8 l(+r 2 )

*X8 - C [0 Y.9 A , (35)

-1 [ir sin()
y9 tan rcos(x ) J 0 : ye . TT/2, (36)

and CA 2 denotes Clausen's integral defined by

x

CA = - log (2 sin (t/2))dt. (37)
0

(Note: There apparently are some minor errors in Eq. (4.5.35) of [2] which

should correspond to (34); however, (34) follows directly from (12) and Eq. (39)

on p. 272 of Lewin [23].)

Equation (8) specifies the worst-case spectral density (i.e., the

IHuber-Strassen derivative) for this model; in particular,we have

2 -
rV (m) - max(c', (l-)(l-r 2)(l-2rcos(w)+r )'l, wE [-rr,], (38)

where c' is defined below (8). Straightforward analysis yields that c' is

the solution to the equation

(1-)% (m0) +6 € -c' . (39)e - c'/(l-e)

The worst-case spectral density of (38) is illustrated in Fig. 1 for the

case r -.5 and s u.25. Note from this illustration that, since

-L I ,dX " I, it follows that c' is monotonically increasing with c for

(l-r)/(l+r) A c' < 1, and that c' will be identically 1 for all e 2 c

.. . . . . . .. . . . . . . . . .. . .,
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where (1-c max)(l+r)/(l-r) = 1; i.e. e max 2r/(l+r). Thus, for all

e a Cmax' the worst-case source is memoryless (i.e., white). Note also

that, for general e, a fraction

c- §X(dw) 
(40)

=TT ci

of the worst-case source power can be thought of as being due to a memory-

,-; less component. This fraction along with the value of c' are plotted versus

e in Fig. 2 for the case r-.75 (for which z =6/7). Note that, for

e .l,about 12% of the source power is due to the memoryless component and,

for c =.3,about 45% is due to the memoryless component.

The rate-distortion function for the worst-case source can be derived

straightforwardly from (12) and (13). After some analysis we have

R (D) - -log (c'/D) + R c(D/(m0  (41)

0 a: = C'/(1-C)

, for 0 < D : c', and R (D) is given parametrically byq

De (q) - (1-,)Dy(m 0 )I + e (42)

and

,'.'R (DO (q)) R (D (m0))1  ,(43)
:::! q amo y 0 O/(i

for c' < D f 1, which corresponds to c' < 8 (l-c)(l+r)/(l-r). Here

Dy(m0 ) and R i(Dy (M0 )) are defined by (33) through (37) and q denotes the
0

measure corresponding to the Lebesgue density Tv (i.e., dq = vdX). The

, . - _ .-. . o • . ., - .- ... , .
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rate-distortion function of (41) through (43) is plotted in Fig. 3 for the

case r = .75 and for several values of C. Note that, as e increases from

zero to e the convexity of the worst-case curve becomes less pronounced. Of

course, the e = 0 curve corresponds to the uncontaminated Gauss-Markov source, and

the C c max curve corresponds to a memoryless source which is universally the worst case.

It is interesting to note that (39) and (41) through (43) also apply

to mixtures with nominal spectra other than the Gauss-Markov. That is, if

rT0 dX = 2TT where TT = dm0/dX, then the mixture model with nominal measure
0 0

m0 has worst-case spectral density given by (8) and (39), and the corres-

ponding rate-distortion function is given by (41) through (43) with

D (m0 ) and R m(D (m 0)) being the rate-distortion equations for m0. Thus,

behavior similar to that of Fig. 3 would be expected for other mixtures.

For example, for e ? i - ess sup 7T0(W), such a mixture class would contain
wE Q

a memoryless source.

~1

-5
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V. EXTENSION TO BANDLIMITED CONTINUOUS-PARAMETER SOURCES

Theorems I and 2, as proven above, apply to discrete-parameter sources.

Rate-distortion functions for continuous-parameter sources, however, can

also be determined from (12) and (13) provided their spectral densities

are essentially bounded (see Berger [2, pp. 116-122]). Thus, if we assume

that X = (Xt; t E )n is a homogeneous continuous-parameter source with

spectral measure m E ?, a capacity class on (I , ), we should be able to

prove results analogous to Theorems 1 and 2. This is the case if we make

the additional restriction that v(n ) = 0 for some compact 0 _ 1 n  This

restriction is equivalent to assuming that all sources have a common

(finite) bandlimit and is sufficient to assure that (12) and (13) apply to

all source spectra in 7v and to apply the existing Huber-Strassen theory

to differentiate v with respect to Lebesgue measure on 0. We thus have

UTheorem 3: Theorems I and 2 hold for n-continuous-parameter sources

provided L is a compact subset of 3.n

It should be noted that Huber-Strassen derivatives of capacities with

respect to a-finite (and notfinite) measures can be constructed [24]; thus

Theorem 3 can possibly be extended to nonbandlimited sources provided that

the definition of Tv is appropriately modified. However, several of the

most useful examples of capacity classes (e.g., the c-mixtures and varia-

tion neighborhoods) fail to be capacity classes when 0 is not compact.

L7:
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List of Footnotes

1. For compactness of notation we will write [f > 9) to denote (wEj f(w)>e3.

2. Note that this set function (and the one defined in Example 2) is dis-

continuous fromabove at the null set 0. However, for Q - Tt,TT] , this

Udiscontinuity does not violate the property that v must be continuous

from above on closed sets (i.e., Property (iv)) since, in a compact

separable metric space, there is no sequence of closed sets converging

down to the null set (Dunford and Schwartz [11, pp. 30-31]).
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Fig. 1 -Worst-case spectral density for a contaminated-mixture class

V. ~ (e-.25) with a nominal Gauss-Markov source (r-.5).

Fig. 2 - Worst-case spectrum parameter c' and fraction of worst-case

spectrum power contained in memoryless component versus e; mixture-

contaminated Gauss-Markov source (r -.75).

Fig. 3 -sup R (D) for mixture- contaminat ed Gauss-Markov source (r =.75).
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